An Examination of Feature Selection Frameworks in Text Categorization
نویسندگان
چکیده
Feature selection, an important task in text categorization, is used for the purpose of dimensionality reduction. Feature selection basically can be performed locally and globally. For local selection, distinct feature sets are derived from different classes. The number of feature set is thus depended on the number of class. In contrary, only one universal feature set will be used in global feature selection. It is assumed that the feature set should preserve the characteristic of all classes. Furthermore, feature selection can also be carried out based on relevant feature set only (local dictionary) or both relevant and irrelevant feature set (universal dictionary). In this paper, we explored the different frameworks of feature selection to the task of text categorization on the Reuters(lO) and Reuters(115) datasets (variants of Reuters-21578 corpus). We then investigate the efficiency of 7 different local or global feature selections corresponds the use of local and universal dictionary. Our experiments have shown that local feature selection with local dictionary yields optimal categorization results.
منابع مشابه
Improving the Operation of Text Categorization Systems with Selecting Proper Features Based on PSO-LA
With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to reduce the dimensionality of features space. There are many feature selection methods. However...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کامل